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A master equation for quantum systems driven by Poisson 
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Abptnd. An evolution equation for a reduced statistical operator of quantum systems 
driven by Poisson white noise is derived. It is applied to a simple system and compared 
with a counterpart driven by Gaussian white noise. 

The influence of noise on systems has been extensively studied (for recent reviews see 
[l ,  21). When studying effects of noise on a system, one should distinguish between 
the cases of external and internal as well as classical and quantum noises. In this letter 
we consider a quantum system driven by white Poisson noise. A source of such noise 
may be external and it can be treated as classical or internal noise and it can have a 
quantum nature [3]. External Poisson noise can be generated, for example, by voltaic 
impulses, flashes of light, laser impulses, etc, with prescribed stochastic characteristics 
of point processes [4,5]. The quantum character of Poisson noise can be related to 
any quantum point process that occurs with random intensity and randomly in time, 
e.g. optical signals as a result of spontaneous emission of excited atoms, quantum 
jumps, emission of photoelectrons, etc [3,5]. 

Let 

H = He+ z (  1 )  V (1)  

be the Hamiltonian of a quantum system, where Ho and V are Hermitian operators 
and z ( t )  is a real Poisson white noise [6-E] 

N(V)  

z ( t ) =  1 . $ S ( t - t , ) - w ( c ) .  (2) 
i - l  
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P ( N ( t )  = n )  = (ut)" e - " ' / n !  

( w is a mean number of peaks per unit time). The random variables .$! are independent 
of each other and distributed with the same probability density P ( f ) ,  (6) is a mean 
value of ti over P ( 5 )  and the random times ti are uniformly distributed in the interval 
( 0 , t ) .  The process r ( t )  has zero mean value 

( z (  I ) )  = 0 

( z ( t ) z ( s ) )  = v (g }B( t  -SI. 

and is delta correlated (white noise) 
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There are several additional reasons why it-is worth studying the system described by 
equations (1) and (2). For example, compare properties of classical systems and their 
quantum counterparts driven by the same noise; compare behaviours of a quantum 
system driven by different noises; compare a quantum system driven by noise (2) and 
a periodically kicked system (random and deterministic delta peaks and quantum 
chaos problems [lo]). 

Our aim is to obtain an evolution equation for a reduced statistical operator 

P J t )  = ( P ( t h  (3) 

which is the average over all realizations of z ( t )  (indicated by the subscript z in (3)) 
of the density operator p ( f )  that obeys the Liouville-von Neumann equation 

b ( t ) =  -(i/h)[H, p(f)l .  (4) 

Taking the average (4) we get 

P L f )  = - ( i / h ) [ & ,  p,(t)l-(i/h)(z(t)[V, p(t)IL. ( 5 )  

Equation ( 5 )  is not closed. To proceed further, we use the Klyatskin-Tatarsky formula 
[ l l ]  adapted to the process (2). It has the form 

where R[z] is an arbitrary functional of the process (2). In our case R[z]=[ V,p(f)] 
and p(t)=p[z(f)]  is a functional of z ( t )  via equations (4) and (1). The functional 
derivative 

and hence 

P )  d,,[ v, e - ( i l h ) ? V  ( i / h ) n V ]  =ifi(e-(ilhW"f e - ( i l h ) f V -  p e  

which is valid for an arbitrary operator p. 

be generalized for the case 
Equation (9) is a desired equation for a reduced statistical operator p,(f). It can 

H = H o + ~ z k ( f ) V k  
k 
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where & ( I )  are independent Poisson white noises. For comparison, a quantum system 
driven by Gaussian white noise (z(t)+r(t))  

(r(o)=o (r(r)r(s)) = Z D S ( I  - s )  

P J t )  = -(i/h)[H,,p,(~)l-(D/h*)[V, [ V ,  p,(Oll 

is described by the equation [I21 

(10) 

with the diffusion coefficient D. 

in the x-direction 
As an illustration, let us consider a two-level system perturbed by random peaks 

H = hw,S'+ hz( t )S" (11) 

where S' ( i  = x, y,  2) are the spin S = f operators. From (9) it follows that 

x = -w,y j = w , x + I I z  - yy i = - a y  - yz (12) 

x = (S")  Y = (SY)  z = (S') 

n = ~ J ' _ ~ d H f - s i n f ) P ( f )  (13) 

where 

and 
m 

m 

? = U  l - m d f ( l - c o s  t)P(5).  (14) 

A system similar to (1 1) but driven by Gaussian white noise r( t )  is described by the 
set of equations 

x = -woy j = wax- Dy i = -Dz. (15) 

Equations (12) and (15) represent rotations (with frequencies w, and R)  and damping 
(with the rate y or D )  of the y and z components. If I I = O  then (12) and (15) have 
the same form. Otherwise, an effective field of strength proportional to II is produced 
by z ( t )  (but not by T(t ) ) .  For example, if (( takes a single value, &=&, then 
P(#)=8({-5,,) and IIf.0. If P ( 5 )  is an exponential distribution, P ( f ) =  
a@(() exp(-n<), where a , > O  and 0 is the Heaviside function, then II # O  as well. If 
P(5) is a Gaussian distribution, P(g)-exp(-ag2), a>O, then R=O. In both cases 
(12) and (15), the noises z ( t )  and T ( t )  induce damping and relaxation processes appear 
in the system. Their action is equivalent to an action of a heat bath (surroundings) 
and the system behaves as an open system. In general, it is not a rule. For example 
for a quantum harmonic oscillator with V = x  (where x is a position variable) the 
noises z( I )  or f )  do not induce damping but on the contrary act as a pump of energy 
to the system. 

An application of the theory presented here to less trivial quantum models will be 
considered elsewhere. 

This work is supported in part by the Committee of Science Research. The authors 
would like to thank a referee for remarks which allowed them to improve the 
presentation. 
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